
Bacon.js Cheat Sheet
by ProLoser via cheatography.com/1600/cs/1103/

Observable Interface

obse rva ble.ma p(f)

maps values using given function, returning
a new EventS tream. Instead of a function,
you can also provide a constant value.
Further, you can use a property extractor
string like ".ke yCo de". So, if f is a string
starting with a dot, the elements will be
mapped to the corres ponding field/ fun ction
in the event value. For instance
map(".k eyC ode ") will pluck the keyCode field
from the input values. If keyCode was a
function, the result stream would contain the
values returned by the function. The
Function Constr uction rules below apply
here.

stre am.m ap (pr ope rty)

maps the stream events to the current value
of the given property. This is equivalent to
prope rty.sa mpl edB y(s tream)

obse rva ble.ma pEr ror (f)

maps errors using given function. More
specif ically, feeds the " err or" field of the
error event to the function and produces a
" Nex t" event based on the return value.
Function Constr uction rules apply. You can
omit the argument to produce a Next event
with undef ined value.

obse rva ble.ma pEn d(f)

Adds an extra Next event just before End.
The value is created by calling the given
function when the source stream ends.
Instead of a function, a static value can be
used. You can omit the argument to produce
a Next event with undef ined value.

obse rva ble.fi lte r(f)

filters values using given predicate function.
Instead of a function, you can use a constant
value (true/ false) or a property extractor
string (like ".is Val uab le") instead. Just like
with map, indeed.

Observable Interface (cont)

obse rva ble.fi lte r(p rop erty)

filters values based on the value of a
property. Event will be included in output iff
the property holds true at the time of the
event.

obse rva ble.ta keW hil e(f)

takes while given predicate function holds
true

obse rva ble.ta ke(n)

takes at most n elements from the stream.
Equals to Bacon.n ever() if n <= 0.

obse rva ble.ta keU nti l(s tre am2)

takes elements from source until a Next
event appears in the other stream. If other
stream ends without value, it is ignored

obse rva ble.sk ip(n)

skips the first n elements from the stream

obse rva ble.de lay (de lay)

delays the stream /pr operty by given amount
of millis econds. Does not delay the initial
value of a Property.

obse rva ble.th rot tle (de lay)

throttles stream /pr operty by given amount of
millis econds. Events are emitted with the
minimum interval of delay. The
implem ent ation is based on
stream.bu ffe rWi thTime. Does not affect
emitting the initial value of a Property.

obse rva ble.de bou nce (de lay)

throttles stream /pr operty by given amount of
millis econds, but so that event is only
emitted after the given " quiet period ". Does
not affect emitting the initial value of a
Property. The difference of throttle and
debounce is the same as it is in the same
methods in jQuery.

obse rva ble.de bou nce Imm edi ate (de lay)

passes the first event in the stream through,
but after that, only passes events after a
given number of millis econds have passed
since previous output.

Observable Interface (cont)

obse rva ble.do Act ion (f)

returns a stream /pr operty where the function
f is executed for each value, before
dispat ching to subscr ibers. This is useful for
debugging, but also for stuff like calling the
preven tDe fault() method for events. In fact,
you can also use a proper ty- ext ractor string
instead of a function, as in
".pr eve ntD efa ult ".

obse rva ble.no t()

returns a stream /pr operty that inverts
boolean values

obse rva ble.fl atM ap(f)

for each element in the source stream,
spawn a new stream using the function f.
Collect events from each of the spawned
streams into the result Event Str eam. This is
very similar to selectMany in RxJs. Note that
instead of a function, you can provide a
stream /pr operty too. Also, the return value
of function f can be either an Observable
(strea m/p rop erty) or a constant value. The
result of flatMap is always an Event Str eam.
strea m.f lat Map() can be used conven iently
with Bacon.on ce() and Bacon.ne ver() for
converting and filtering at the same time,
including only some of the results.

obse rva ble.fl atM apL ate st(f)

like flatMap, but instead of including events
from all spawned streams, only includes
them from the latest spawned stream. You
can think this as switching from stream to
stream. The old name for this method is
switch. Note that instead of a function, you
can provide a stream /pr operty too.

obse rva ble.fl atM apF irs t(f)

like flatMap, but doesn't spawns a new
stream only if the previously spawned
stream has ended.

By ProLoser
cheatography.com/proloser/
www.DeanSofer.com

Published 11th June, 2013.
Last updated 3rd June, 2014.
Page 1 of 4.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/proloser/
http://www.cheatography.com/proloser/cheat-sheets/bacon-js
http://www.cheatography.com/proloser/
www.DeanSofer.com
http://crosswordcheats.com

Bacon.js Cheat Sheet
by ProLoser via cheatography.com/1600/cs/1103/

Observable Interface (cont)

obse rva ble.sc an(seed, f)

scans stream /pr operty with given seed value
and accumu lator function, resulting to a
Property. For example, you might use zero
as seed and a " plu s" function as the
accumu lator to create an " int egr al" property.
Instead of a function, you can also supply a
method name such as ".co nca t", in which
case this method is called on the
accumu lator value and the new stream value
is used as argument.

obse rva ble.fo ld(seed, f)

is like scan but only emits the final value, i.e.
the value just before the observable ends.
Returns a Property.

obse rva ble.re duc e(s eed ,f)

synonym for fold.

obse rva ble.di ff(start, f)

returns a Property that represents the result
of a comparison between the previous and
current value of the Observ able. For the
initial value of the Observ able, the previous
value will be the given start.

obse rva ble.zi p(o ther, f)

return an EventS tream with elements pair-
wise lined up with events from this and the
other stream. A zipped stream will publish
only when it has a value from each stream
and will only produce values up to when any
single stream ends. Be careful not to have
too much " dri ft" between streams. If one
stream produces many more values than
some other excessive buffering will occur
inside the zipped observ able.

obse rva ble.sl idi ngW ind ow(max[, min])

returns a Property that represents a " sliding
window " into the history of the values of the
Observ able. The result Property will have a
value that is an array containing the last n
values of the original observ able, where n is
at most the value of the max argument, and
at least the value of the min argument. If the
min argument is omitted, there's no lower
limit of values.

Observable Interface (cont)

obse rva ble.lo g()

logs each value of the Observable to the
console. It optionally takes arguments to
pass to consol e.log() alongside each value.
To assist with chaining, it returns the original
Observ able. Note that as a side-e ffect, the
observable will have a constant listener and
will not be garbag e-c oll ected. So, use this
for debugging only and remove from
production code.

obse rva ble.co mbi ne(pro perty2, f)

combines the latest values of the two
streams or properties using a two-arg
function. Similarly to scan, you can use a
method name instead, so you could do
a.com bine(b, ".co nca t") for two properties
with array value. The result is a Property.

obse rva ble.wi thS tat eMa chi ne(ini tState, f)

lets you run a state machine on an
observ able. Give it an initial state object and
a state transf orm ation function that
processes each incoming event and returns
and array containing the next state and an
array of output events.

obse rva ble.de cod e(m app ing)

decodes input using the given mapping. Is a
bit like a switch -case or the decode function
in Oracle SQL. For example, the following
would map the value 1 into the the string
" mik e" and the value 2 into the value of the
who property.

Both EventS tream and Property share the
Observable interface, and hence share a lot of
methods. Common methods are listed below.
https: //g ith ub.c om /ra imo han ska /ba con.js #co mmo
n-m eth ods -in -ev ent str eam s-a nd- pro perties

EventS tream

Baco n.E ven tSt ream

a stream of events

EventS tream (cont)

stre am.o nV alu e(f)

subscribes a given handler function to event
stream. Function will be called for each new
value in the stream. This is the simplest way
to assign a side-e ffect to a stream. The
difference to the subscribe method is that
the actual stream values are received,
instead of Event objects. Function
Constr uction rules below apply here.

stre am.o nV alu es(f)

like onValue, but splits the value (assuming
its an array) as function arguments to f

stre am.o nE nd(f)

subscribes a callback to stream end. The
function will be called when the stream
ends.

stre am.s ub scr ibe (f)

subscribes given handler function to event
stream. Function will receive Event objects
(see below). The subscr ibe() call returns a
unsubs cribe function that you can call to
unsubs cribe. You can also unsubs cribe by
returning Bacon.n oMore from the handler
function as a reply to an Event.

stre am.s ki pDu pli cat es([is Equ al])

drops consec utive equal elements. So, from
[1, 2, 2, 1] you'd get [1, 2, 1]. Uses the ===
operator for equality checking by default. If
the isEqual argument is supplied, checks by
calling isEqua l(o ldV alue, newValue). For
instance, to do a deep compar iso n,you can
use the isEqual function from unders core.js
like stream.sk ipD upl ica tes (_.i sE qual).

stre am1.co nca t(s tre am2)

concat enates two streams into one stream
so that it will deliver events from stream1
until it ends and then deliver events from
stream2. This means too that events from
stream2, occurring before the end of
stream1 will not be included in the result
stream.

By ProLoser
cheatography.com/proloser/
www.DeanSofer.com

Published 11th June, 2013.
Last updated 3rd June, 2014.
Page 2 of 4.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/proloser/
http://www.cheatography.com/proloser/cheat-sheets/bacon-js
https://github.com/raimohanska/bacon.js#common-methods-in-eventstreams-and-properties
http://www.cheatography.com/proloser/
www.DeanSofer.com
http://crosswordcheats.com

Bacon.js Cheat Sheet
by ProLoser via cheatography.com/1600/cs/1103/

EventS tream (cont)

stre am.m er ge(str eam2)

merges two streams into one stream that
delivers events from both

stre am.b uf fer Wit hTi me(del ay)

buffers stream events with given delay. The
buffer is flushed at most once in the given
delay. So, if your input contains
[1,2,3 ,4, 5,6,7], then you might get two
events containing [1,2,3,4] and [5,6,7]
respec tively, given that the flush occurs
between numbers 4 and 5.

stre am.b uf fer Wit hTi me(f)

works with a given " def er- fun cti on" instead
of a delay. Here's a simple example, which
is equivalent to stream.bu ffe rWi thT ime (10):
stream.bu ffe rWi thT ime (fu nct ion(f) {
setTim eout(f, 10) })

stre am.b uf fer Wit hCo unt (co unt)

buffers stream events with given count. The
buffer is flushed when it contains the given
number of elements. So, if you buffer a
stream of [1, 2, 3, 4, 5] with count 2, you'll
get output events with values [1, 2], [3, 4]
and [5].

stre am.b uf fer Wit hTi meO rCo unt (delay,
count)

buffers stream events and flushes when
either the buffer contains the given number
elements or the given amount of
millis econds has passed since last buffered
event.

stre am.t oP rop ert y()

creates a Property based on the
EventS tream. Without arguments, you'll get
a Property without an initial value. The
Property will get its first actual value from the
stream, and after that it'll always have a
current value.

stre am.t oP rop ert y(i nit ial Val ue)

creates a Property based on the
EventS tream with the given initial value that
will be used as the current value until the
first value comes from the stream.

EventS tream (cont)

stre am1.aw ait ing (st rea m2)

creates a Property that indicates whether
stream1 is awaiting stream2, i.e. has
produced a value after the latest value from
stream2. This is handy for keeping track
whether we are currently awaiting an AJAX
response: var showAj axI ndi cator =
ajaxRe que st.a wa iti ng(aja xRe sponse)

https: //g ith ub.c om /ra imo han ska /ba con.js ?
ut m_s our ce= jav asc rip twe ekl y& utm _me diu m=e m
ai l#e ven tstream

Bus

new Bacon.B us()

returns a new Bus.

bus.p us h(x)

pushes the given value to the stream.

bus.e nd()

ends the stream. Sends an End event to all
subscr ibers. After this call, there'll be no
more events to the subscr ibers. Also, the
Bus push and plug methods have no effect.

bus.e rr or(e)

sends an Error with given message to all
subscr ibers

bus.p lu g(s tre am)

plugs the given stream to the Bus. All events
from the given stream will be delivered to
the subscr ibers of the Bus. Returns a
function that can be used to unplug the
same stream. The plug method practi cally
allows you to merge in other streams after
the creation of the Bus. I've found Bus quite
useful as an event broadcast mechanism in
the Worzone game, for instance.

Bus is an EventS tream that allows you to push
values into the stream. It also allows pluggin
other streams into the Bus. The Bus practi cally
merges all plugged-in streams and the values
pushed using the push method.

https: //g ith ub.c om /ra imo han ska /ba con.js ?
ut m_s our ce= jav asc rip twe ekl y& utm _me diu m=e m
ai l#bus

Property

Baco n.P rop erty

a reactive property. Has the concept of
" current value". You can create a Property
from an EventS tream by using either
toProperty or scan method. Note depending
on how a Property is created, it may or may
not have an initial value.

Baco n.c ons tan t(x)

creates a constant property with value x.

prop ert y.s ubs cri be(f)

subscribes a handler function to property. If
there's a current value, an Initial event will
be pushed immedi ately. Next event will be
pushed on updates and an End event in
case the source EventS tream ends.

prop ert y.o nVa lue (f)

similar to eventS tre am.o nV alue, except that
also pushes the initial value of the property,
in case there is one. See Function
Constr uction rules below for different forms
of calling this method.

prop ert y.o nVa lue s(f)

like onValue, but splits the value (assuming
its an array) as function arguments to f

prop ert y.o nEn d(f)

subscribes a callback to stream end. The
function will be called when the source
stream of the property ends.

By ProLoser
cheatography.com/proloser/
www.DeanSofer.com

Published 11th June, 2013.
Last updated 3rd June, 2014.
Page 3 of 4.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/proloser/
http://www.cheatography.com/proloser/cheat-sheets/bacon-js
https://github.com/raimohanska/bacon.js?utm_source=javascriptweekly&utm_medium=email#eventstream
https://github.com/raimohanska/bacon.js?utm_source=javascriptweekly&utm_medium=email#bus
http://www.cheatography.com/proloser/
www.DeanSofer.com
http://crosswordcheats.com

Bacon.js Cheat Sheet
by ProLoser via cheatography.com/1600/cs/1103/

Property (cont)

prop ert y.a ssi gn(obj, method, [para m...])

calls the method of the given object with
each value of this Property. You can
optionally supply arguments which will be
used as the first arguments of the method
call. For instance, if you want to assign your
Property to the " dis abl ed" attribute of a
JQuery object, you can do this:
myProp ert y.a ssi gn($("# my- but ton "), " att r",
" dis abl ed") A simpler example would be to
toggle the visibility of an element based on a
Property:
myProp ert y.a ssi gn($("# my- but ton "),
" tog gle ") Note that the assign method is
actually just a synonym for onValue and the
function constr uction rules below apply to
both.

prop ert y.s amp le(int erv al)

creates an EventS tream by sampling the
property value at given interval (in
millis econds)

prop ert y.s amp led By(str eam)

creates an EventS tream by sampling the
property value at each event from the given
stream. The result EventS tream will contain
the property value at each event in the
source stream.

prop ert y.s amp led By(pro per ty)

creates a Property by sampling the property
value at each event from the given property.
The result Property will contain the property
value at each event in the source property.

prop ert y.s amp led By(str eam OrP rop erty, f)

samples the property on stream events. The
result values will be formed using the given
function f(prop ert yValue, sample rVa lue).
You can use a method name (such as
".co nca t") instead of a function too.

prop ert y.s kip Dup lic ate s([is Equ al])

drops consec utive equal elements. So, from
[1, 2, 2, 1] you'd get [1, 2, 1]. Uses the ===
operator for equality checking by default. If
the isEqual argument is supplied, checks by
calling isEqua l(o ldV alue, newValue). The old
name for this method was
" dis tin ctU nti lCh ang ed".

Property (cont)

prop ert y.c han ges()

returns an EventS tream of property value
changes. Returns exactly the same events
as the property itself, except any Initial
events. Note that proper ty.c ha nges() does
NOT skip duplicate values, use
.skipD upl ica tes() for that.

prop ert y.a nd(oth er)

combines properties with the && operator.

prop ert y.o r(o ther)

combines properties with the || operator.

https: //g ith ub.c om /ra imo han ska /ba con.js ?
ut m_s our ce= jav asc rip twe ekl y& utm _me diu m=e m
ai l#p roperty

Event Types

Baco n.E vent

has subclasses Next, End, Error and Initial

Baco n.N ext

next value in an EventS tream or a Property.
Call isNext() to distin guish a Next event
from other events.

Baco n.End

an end-of -stream event of EventS tream or
Property. Call isEnd() to distin guish an End
from other events.

Baco n.E rror

an error event. Call isError() to distin guish
these events in your subscr iber, or use
onError to react to error events only.
errorE ven t.error returns the associated error
object (usually string).

Baco n.I nit ial

the initial (current) value of a Property. Call
isInit ial() to distin guish from other events.
Only sent immedi ately after subscr iption to a
Property.

https: //g ith ub.c om /ra imo han ska /ba con.js ?
ut m_s our ce= jav asc rip twe ekl y& utm _me diu m=e m
ai l#event

Event Methods

even t.v alu e()

returns the value associated with a Next or
Initial event

even t.h asV alu e()

returns true for events of type Initial and
Next

even t.i sNe xt()

true for Next events

even t.i sIn iti al()

true for Initial events

even t.i sEn d()

true for End events

https: //g ith ub.c om /ra imo han ska /ba con.js ?
ut m_s our ce= jav asc rip twe ekl y& utm _me diu m=e m
ai l#event

By ProLoser
cheatography.com/proloser/
www.DeanSofer.com

Published 11th June, 2013.
Last updated 3rd June, 2014.
Page 4 of 4.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/proloser/
http://www.cheatography.com/proloser/cheat-sheets/bacon-js
https://github.com/raimohanska/bacon.js?utm_source=javascriptweekly&utm_medium=email#property
https://github.com/raimohanska/bacon.js?utm_source=javascriptweekly&utm_medium=email#event
https://github.com/raimohanska/bacon.js?utm_source=javascriptweekly&utm_medium=email#event
http://www.cheatography.com/proloser/
www.DeanSofer.com
http://crosswordcheats.com

	Bacon.js Cheat Sheet - Page 1
	Observable Interface

	Bacon.js Cheat Sheet - Page 2
	EventStream

	Bacon.js Cheat Sheet - Page 3
	Property
	Bus

	Bacon.js Cheat Sheet - Page 4
	Event Methods
	Event Types

